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An implicit predictor-corrector difference scheme is employed to study the pro- 
pagation of spherical and cylindrical N-waves governed by the modified Burgers 
equation 

where v = 0 , l  or 2 for plane, cylindrical and spherical symmetry respectively. The 
numerical scheme is first tested by computing the plane solution and comparing 
it with theexact analyticsolution obtained by Lighthill (1956) through the Hopf- 
Cole transformation. 
Our numerical solutions for the non-planar N-waves show that variation of the 

‘lobe’ Reynolds number, which may be used as a measure of the importance of 
viscous diffusion, can be accurately determined by the analysis which is strictly 
valid only for large Reynolds numbers. This is true even when shock wave is well 
diffused end the ‘lobe’ Reynolds number is as small as 9. 

1. Introduction 
A simple equation describes the motion of weak nonlinear waves in gases when 

the dissipative effects are taken into account. This equation was probably first 
mentioned by Bateman (1915) with reference to certain fluid motions. Burgers 
(1948) proposed this equation as a model for one-dimensional turbulence and 
subsequently it has been called the Burgers equation. Lighthill, in hi8 1956 survey 
paper, derived the equation from the basic equations of gasdynamics in the form 

where u is the excess wave velocity, u = v + a - a,, v and a being the particle and 
sound speed respectively; X = x - a, t is a co-ordinate measured in a frame of 
reference which moves in the same direction as the wave at  the undisturbed speed 
of sound a,; x and t are, of course, space and time co-ordinates. The co-ordinate 
X enables us to follow changes in the wave form without further changes in the 
origin. The coefficient 6 is the ‘diffusivity of sound’, being a combination of 
different diffusivities which affect acoustic attenuation. 

Equation (1.1) represents a balance between convection and viscous diffusion. 
It follows from the assumption that the ratio U/u, of the maximum fluid velocity 
to the speed of sound and the viscous diffusivity, non-dimensionalized by an 
effective frequency w chosen such that Uola is the maximum velocity gradient, 

t Present address: Department of Applied Mathematics, Indian Institute of Science, 
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are small and of the same order. The variant of this equation that applies for 
motion with plane, cylindrical and spherical symmetry is 

where v = 0, 1 or 2 for plane, cylindrical and spherical symmetry respectively. 
The other variables have the same significance as in (1.1). Leibovich & Seebass 
(1972) discussed in some detail the relative role of nonlinearity and viscous dis- 
sipation in the entire course of evolution of a wave produced initially by a plane, 
cylindrical or spherical piston. The formation of an N-wave from an initial 
wave form with both positive and negative phases and its subsequent decay were 
also discussed for large and small Reynolds numbers respectively. 

In  plane geometry (v = 0)  equation (1.2) fortunately admits a transformation 
u = -S($J$), discovered by Hopf (1950) and Cole (1951), which renders this 
equation linear ; indeed, it becomes the well-known heat equation in #. Lighthill 
(1956) deduced a number of useful results for weak plane shock waves by using 
the above transformation. In  particular, he studied the decay of a ‘balanced’ 
N-wave for which 

u d X  = 0. 

This wave may be produced by moving a piston forward and then returning it 
to its original position. For an N-wave, a convenient precise definition of the 
Reynolds number is 

R = : IomudX,  

which is the ratio of the product of velocity amplitude and length scale of the 
front ‘lobe ’ of the N-wave to the diffusivity 6. Thus initially, with 6 a small quan- 
tity, R B 1, theviscous termin ( I  .2) is important onlyin the thin shock layer, and 
the solution in the inviscid region is u = X / t ,  which is shape-preserving. On 
integrating (1.2) with respect to X from 0 to m and making use of the slope at  
X = 0 from the inviscid solution, one finds that R N In (to/t), where to is a constant. 
On the other hand, when the wave has propagated a long distance and nonlinear- 
ity is no longer important, the solution becomes essentially diffusive, and it 
can easily be shown that R N (to/t)*, where to is (different) constant. Lighthill 
(1956) obtained the exact solution as R = In [I + (t,/t)B], where to is a time when 
the pulse length has become a large multiple of its initial value. It is obvious 
that this solution has the asymptotic behaviour referred to above. 

It is of some interest to study the decay of spherical and cylindrical N-waves, 
which find applications, for example, in explosions and the theory of the sonic 
boom from an aircraft. Equation (1.2) for v = 1 , 2  does not admit a Hopf-Cole 
type of transformation and hence has to  be dealt with in its nonlinear form. 
An approximate analytic solution of the problem will be reported later. In the 
present paper we study the spherical and cylindrical N-waves numerically using 
an implicit predictor-corrector scheme suggested by Douglas & Jones (1963). 
Section 2 gives the difference scheme employed to  solve (1.2) and the details of 
the numerical procedure. Section 3 contains the test calculations for the plane 
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N-wave and a comparison with the exact analytic solution obtained by Light- 
hill ( 1956). Section 4 deals with the spherical and cylindricd N-waves, and finally 
9 6 provides the conclusions of this study. 

2. Difference scheme and numerical procedure 
Equation (1 .2 )  belongs to the general class of nonlinear parabolic equations 

(2 .1 )  
Douglas & Jones (1963) suggested an implicit predictor-corrector form of the 
difference scheme given by 

A%%, j+) = p [ X i 3  $+a, %,j, 6Xuj,j3 ( ~ i , j + + - ~ i , j ) / i k l  (predictor), 

uxx = F(X, t, u, ux, Ut). 

(2 .2)  I &A%(ui, j+1+ ui, j) 

where = P[&, ti+&, ui, j++, +$x(ui, j+l +ui, j), (ui,j+i-~i,j)/k] (corrector), 

} (2 .3 )  
A; ui, j = h-2( ui +I, j - 2ui, j + ~i-1, j) , 8, ~ i ,  j = (2h)-' (%%+I, j - ui-1, j )  , 

~ { , j  = u(Xi,tj), X i  = ih,  tj =jk. 
This difference scheme has a truncation error of O(h2+k2),  where h and k are 

space and time mesh sizes respectively. Douglas & Jones (1963) have demon- 
strated the convergence of the difference scheme (2 .2)  for (2 .1 ) .  At any two con- 
secutive times ti++ and tj+l, separated by a time interval @, this scheme leads to 
two sets of linear algebraic equations in the unknowns u~,~++ and ui, j+l, which 
reduce to a triadiagonal matrix form provided that we guess the value of u at 
the iirst of the set of points, both a t  ti++ and Assuming the initial values 
described in the following sections, the solution at  the subsequent time is obtained 
by a4 iterative scheme that assumes that the solution at a few points on the left 
of the node of the N-wave is antisymmetric with respect to those on the right. This 
requires changing the value of u a t  the extreme left end-point at  ti+$ and until 
the required antisymmetry condition is satisfied to the desired accuracy. 

As the computation proceeds, the wave profile spreads to the right (and left) 
and new points have to be added a t  successive times, where the value of u is 
significant (say greater than As the pulse grows in length, say, becoming 
twice its original length, the mesh size is increased to keep the matrix of this sys- 
tem from becoming unwieldy. The calculations were repeated to ensure that the 
accuracy of the solution did not euffer by this change of mesh size. 

If we substitute the difference scheme (2 .2)  with (2 .3)  in ( 1 , 2 ) ,  we obtain 

2vh2 ~ i ,  j+& 
(corrector). 

SIC( j + *) - Ui-1, j + 
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t = 3.0, R = 2.4859 t = 9.0, R = 1.9954 t = 29.0, R = 1,5123 

u u u 
r \ I  \ I  \ 

A A h 

X 

0 
0.04 
0.08 
0.12 
0.16 
0.20 
0-24 
0.28 
0.32 
0.36 
0.40 
0.44 
0.48 
0.52 
0.56 
0.60 
0.64 
0.68 
0.72 
0.76 
0.80 
0-84 
0.88 
0.92 
0.96 
1.00 
1-04 
1.2 
1.4 
1.8 

Numerical 

0 
0.01220 
0.02423 
0.03588 
0.04685 
0.05669 
0.06471 
0.06994 
0.07114 
0-067 15 
0.05777 
0.04454 
0-03055 
0.01873 
0*01040 
0*00531 
0.00252 
0*00112 
0.00467 x 10-1 
0.00184 x 10-1 
0.00684 x loWa 
0.00314 x lo-* 

Exact Numerical 

0 0 
0.01219 0 * 0 0 3 8 4 
0,02422 0.00765 
0,03586 0.01140 
0.04682 0.01506 
0.05665 0.01858 
0.06467 0.02193 
0.06990 0.02504 
0.071 11 0,02784 
0.06715 0.03025 
0.05782 0.03216 
0,04463 0,03348 
0.03064 0.03408 
0.01879 0.03387 
0*01043 0.03278 
0.00532 0.03083 
0.00252 0.0 2 8 0 8 
0~00112 0.02472 
0.00467 x 10-1 0.02101 
0.00186 x 10-1 0.01722 
0.00697 x 0.01363 
0,00322 x lop2 0.01043 

0.00773 
0.00556 
0*00390 
0.00266 
0.00178 
0.00283 x 10-1 
0.00164 x 

Exact 
0 
0.00384 
0.00764 
0.01 139 
0.01505 
0.01 858 
0.02192 
0 * 0 2 5 0 3 
0.02783 
0.03024 
0,03215 
0.03347 
0.03407 
0.03386 
0.03279 
0.03084 
0.0281 1 
0.02476 
0.02105 
0.01727 
0.01367 
0.01046 
0.00775 
0.00558 
0.00391 
0.00267 
0.00178 
0.00284 x 10-1 
0*00184 x lo-% 

Numerical 

0 
0.00108 
0.00215 
0.00321 
0.00426 
0-00530 
0.00631 
0.00730 
0.00826 
0.00918 
0.01006 
0.01088 
0.01166 
0.01237 
0.01301 
0.01367 
0.01404 
0.01442 
0.01469 
0.01485 
0.01490 
0.01483 
0.01463 
0.01432 
0.01388 
0.01334 
0-01270 
0.00943 
0.00519 
0.00810 

Exact 

0 
0*00108 
0.00215 
0.00321 
0.00426 
0.00530 
0.0063 1 
0.00730 
0.00826 
0.00918 
0.01005 
0.01088 
0.01166 
0.01237 
0.01301 
0.01357 
0.01404 
0.01442 
0.01469 
0-01486 
0-01491 
0.01484 
0.01464 
0.01433 
0.01390 
0.01335 
0.01271 
0.00945 
0.00520 
0-00814 

2-2 0-00611 x 10-1 0.00638 x 10-1 

TABLE 1. Comparison of numerical and exact solutions for plane N-wave with initial values 
R, = 3, ti = 1, to = 364.26 at  times t = 3, 9, 29, 122, 347 

We mention here a comparative study of difference schemes for inviscid and vjs- 
cous flows by Taylor, Ndefo & Masson (1972). It was found that the third-order 
implicit difference scheme of Rusanov (1961) with an explicit mtificial viscosity 
provided the best results. The difference scheme used in the present paper is 
shown here to be a good alternative which is simple to use and does not require 
an artificial viscosity. 

3. Test calculations: plane N-wave 
As we noted in Q 1, Lighthill (1956) obtained a closed-form solution for a plane 

(v = 0) balanced N-wave for which 

wax  = 0. 
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X 
0 
0-04 
0.08 
0.12 
0.16 
0.20 
0.24 
0-28 
0.32 
0.36 
0.40 
0.44 
0.48 
0-52 
0.56 
0.60 
0.64 
0.68 
0.72 
0.76 
0.80 
0.84 
0.88 
0-92 
0.96 
1-00 
1.04 
1.4 
1.8 
2.2 
2.6 
3.0 
3.4 
3.8 
4.2 

t = 122, R = 1.0004 

u 
A 

Numerical 
0 
0-000208 
0*000415 
0.000621 
0.000827 
0.00103 
0-00123 
0.00144 
0.00 163 
0.00183 
0.00203 
0.00222 
0.00240 
0.00259 
0.00277 
0.00294 
0.003 I f  
0.00328 
0.00344 
0.00359 
0.00374 
0.00388 
0*00402 
0.00414 
0900426 
0.00438 
0.00448 
0.00500 
0.00463 
0,00345 
0.00207 
0*00101 
0*00409 x 10-1 
0-00137 x 10-1 
0*00350 x 

Exact X 
0 0 
0-000208 0.2 
0*000415 0.4 
0*000622 0.6 
0*000828 0.8 
0.00103 1.00 
0.001 24 1.20 
0.00144 1 *40 
0.00164 1-60 
0*00183 1.80 
0.00203 2.0 
0.00222 2.2 
0.00240 2.4 
0.00259 2.6 
0.00277 2.8 
0.00294 3.0 
0.0031 1 3.2 
0.00328 3.4 
0.00344 3.6 
0.00359 3.8 
0.00374 4.0 
0.00388 4.2 
0*00402 4.4 
0.00415 4.6 
0.00427 4.8 
0.00438 5.0 
0.00448 6.4 
0.00501 5.8 
0.00463 6.2 
0.00346 6.4 
0*00208 6.8 
0.00102 7.2 
0.00415 x 10-1 7.6 
0.00144 x 10-1 8.0 
0.00431 x 10-8 8.4 

TABLE 1 (Cont.). 

t = 531, R = 0.603 

u 
A 

7 

Numericd 

0 
0.0001 70 
0.000338 
0.000501 
0.000659 
0.000808 
0.000946 
0.00167 
0.001 19 
0.00128 
0.00136 
0.00142 
0.00146 
0.00149 
0.00149 
0.00147 
0.00144 
0.00139 
0.00132 
0.00125 
0.00116 
0*00107 
0.000969 
0.000871 
0.000773 
0.000678 
0.000505 
0.000360 
0.000245 
0.000 159 
0-00987 x 10-1 
0.000575 x lo-' 
0.000308 x 10-1 
0.000143 x lo-' 
0.000475 x 

Exact 
0 
0.0001 70 
0*000338 
0.000502 
0.000660 
0~000809 
0-000948 
0.00107 
0-00119 
0.00128 
0*00136 
0.00143 
0.00147 
0-00149 
0*00160 
0.00148 
0.00145 
0.00140 
0-00133 
0.00125 
0.00117 
0-00108 
0*000978 
0-000879 
0.000781 
0-000687 
0.000513 
0*000368 
0-000253 
0.000168 
0.000107 
0.000662 x 10-l 
0*000394 x lo-' 
0-000227 x 10-1 
0.000127 x 10-1 

As noted by Lighthill, the Reynolds number 

where X, ,  is the position of the node u = 0, is not invariant with time, as there 
is mass diffusion across the node, i.e. u,(O, t )  + 0. Lighthill's solution is 

(3.1) 
x/t - x / t  

1 + exp [X2/26t]/(eR - I) - 1 + (t/t,)+exp [Xa/28t] ' U =  

where R is the Reynolds number and is equal to In (1 + (t,/t)*). 
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t 1 25 49 75 99 125 151 175 201 301 531 
Numerical 3-000 1.571 1.314 1.162 1.068 0-993 0-934 0.890 0.849 0.739 0.597 
Exact 3.000 1.572 1.315 1.164 1.071 0.996 0.937 0.893 0.853 0.733 0,603 

TABLE 2. Comparison of the values of Reynolds numbers at different (normalized) times as obtained 
from numerical and exact solut~ions for v = 0, Rd = 3, ti = 1, to = 364.26 

Before proceeding to the non-planar cases, we first reproduced the plane solu- 
tion by our numerical procedure. The expression for the Reynolds number shows 
that it changes very slowly with time when it is large and decays like (to/t)* 
only when it becomes small. Therefore, we consider the solution over two differ- 
ent ranges of Reynolds number. At this point we recall that, in the Burgers equa- 
tion, u, X and t are assumed to have been rendered non-dimensional by a,, I and 
Z/a,, respectively, where a, is the (constant) ambient sound speed and I is a typical 
wavelength. The diffusivity 6 is correspondingly normalized by (ao Z)-l. The 
initial non-dimensional time t is conveniently chosen to be 1 and the initial wave 
profile at this time is prescribed by its Reynolds number. The exact solution of 
Lighthill then determines the solution completely. If this solution were not 
known, we would proceed in the manner described in the following section for 
v = 1 and 2. We have considered two different cases: (i) initially, Ri = 20, 
h = 0.01, lc = 0.01 andfinally, Rf = 18.8, tf = 11.5; (ii) R, = 3, h = 0.01, k = 0.01. 
In  case (ii) we proceeded until the wave profile became 'sufficiently' smooth 
(tr = 137); we then doubled the space interval and carried on the computation 
until R, = 0-6 and tr = 531. 

The numerical calculations and the exact solutions are indistinguishable on 
any reasonable graph. Therefore, we compare the two solutions at  different 
Reynolds numbers in table 1 for case (ii). The agreement is excellent everywhere 
except at the extreme ends of the N-wave, where the magnitude of u becomes 
very small and the prescribed accuracy (10") is not sufficient to  obtain accurate 
results (percentage-wise) in theseregions. Tkroughout the calculations the wave is 
artificially truncated at the point where 1.1 < Table 2 compares the values 
of Reynolds numbers at different times obtained numerically with those from 
(3.2). As is to be expected, the agreement is again good, although there is a small 
error partly due to this truncation of the numerical solution at a finite distance. 

4. Spherical and cylindrical N-waves 

use of the discontinuous solutions 
To obtain initial conditions for spherical and cylindrical N-waves, we make 
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- 9  
L 

- 8  
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-1 
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3 c q-\ \- R = 10.0234 

_I L 

--i -3  

-4 L 

, cylindrical symmetry. 
FIGURE 1. N-waves for Reynolds numbers R = 10, 3 and 1. -, planar motion; 

where X = 1 is taken to be a convenient position of the discontinuity. We impart 
structure to this discontinuity by using Taylor's shock structure for the plane 
case. This approximation is reasonably good for large Reynolds numbers as the 
non-planas shocks may be considered locally planar. Thus, in the thin shock layer, 

(4.2) 

where u,,, is the value of u at X = 1 and X ,  is the centre of a thin shock such that 
it is situated half-way between the points where u = 0 . 9 5 ~ ~ ~ ~  and u = 0*05um,. 
The initial parameters for the two cases were selected so that the discontinuous 
prorofile had a Reynolds number equal to 20. Thisgives: (i) for v = 1, umx = 0.392, 
t ,  = 1.25, 6 = 0-01, X ,  = 1.075, R6 = 23.03; (ii) for Y = 2 , 6  = 0.01, X ,  = 1.075, 
urnax = 0.392, ti = 2.61, Ri = 23.03. The space and time mesh sizes were chosen 
to be h = 0.01 and k = 0.01. The time mesh size was first selected to be 0.005 
but a test ca,lculation for 500 cycles showed that the accuracy was not affected 
by taking it to be 0.01. The linear profile in the inviscid region given by (4.1) 
was also calculated to serve as a check on the results because, for large Reynolds 
numbers, the solution in this region is given by (4.1). In  both cases the computa- 
tions were carried out until the Reynolds number had decreased to about +. 
Figures 1 and 2 give a comparison of the (normalized) solution for plane, cylin- 
drical and spherical N-waves, having Reynolds numbers of 10, 3 and 1.  

If we integrate ( I  .2) with respect to X from 0 to 00, make use of the definition 
(3.2) for the Reynolds number and assume that the gradient of u with respect to 
X at the origin is given by equation (4.1), we obtain 

(4.3) 
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-8 
L 

FIGURE 2. N-waves (asymptotic forms of pulses with zero mass flow) for Reynolds 
numbers R = 10, 3 and 1. --, planar motion; ---, spherical symmetry. 

~ ~~ 

v = l  v = 2  

R R - P 
t Numerical Integral t Numerical Integral 

1.25 23.0306 2 3 * 0 3 0 6 2.61 23.0306 2 3.0 3 0 6 
6.25 10.023 10.023 5-21 11.343 11.347 

10.25 7.717 7,717 10.11 5.723 5.726 
20.25 5-346 5.346 20-1 1 2.784 2.786 
30.25 4.283 4,283 30.11 1.807 1.809 
40.25 3-646 3.647 40.11 1.322 1-323 
50.25 3.211 3.211 50.11 1.032 1.033 
60.25 2.889 2.889 60-1 1 0-8395 0.840 
70.25 2.638 2.639 70.1 1 0-703 0.703 
80.25 2.436 2.437 80.11 0.601 0.601 
90.25 2.269 2.269 90.1 1 0.523 0.522 

100.25 2.127 2.127 100.11 0.460 0.459 
150.25 1.647 1.646 110.11 0.410 0.407 
200.25 1.361 1.359 120.11 0.368 0.365 
311.25 1.001 0.991 130-11 0-333 0.329 
441.25 0.772 0.752 
601.25 0.606 0.573 
801.25 0.479 0.429 

1001.25 0.396 0.331 

TABLE 3. Comparison of the values of Reynolds numbers at different (normalized) times as 
obtained from the numerical solution and the integral (4.2); Ri = 23-0306 and ti = 1-25 
for v = 1, and R, = 23.0306 and ti = 2.61 for v = 2. 

Here we evaluate the constants to, c and tx by making use of the initial conditions. 
Thus, for v = I with t ,  = 1.25 and R, = 23.03, we have to = 692.08 and for v = 2 
witht, = 2-61 andR, = 23.03, cisfoundtobeequalto60.109.Makinguseofthese 
constants we evaluate the Reynolds number at subsequent times. Table 3 com- 
pares the values of the Reynolds number obtained from the numerical solution 
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with those obtained from (4.3). In  both cases the agreement is excellent for 
R > +. We arrive at  the important conclusion that the ‘lobe’ Reynolds number 
of the spherical and cylindrical N-waves may be obtained from (4.2) for the 
entire time regime over which it decreases from a large value to it value as low 
as i. This is possible because the slope of the wave profile at the origin is correctly 
given by equation (4.1) even when the N-wave has propagated a long distance 
and has diffused markedly. 

5. Conclusions 
We have studied the propagation of spherical and cylindrical N-waves 

numerically. An implicit predictor-corrector method is used to solve an initial 
boundary-value problem aver an infinite domain and provides excellent results. 
An important result of this numerical study is that formula (4.3), which is 
obtained by procedures which are valid only for R 9 1, may be used to compute 
lobe Reynolds numbers for the spherical and cylindrical N-waves even when their 
Reynolds numbers are as small as 4. Thus this formula can be used to determine 
the nature of the wave form in the non-planar cases and supplements the exact 
solution for plane N-waves given by Lighthill (1956). 

The authors wish to thank Mr S .  K. Sahni for programming the numerical 
scheme for IBM360/65. This research was sponsored by the U.S. Air Force 
Office of Scientific Research under Grant 69-1687B. 

REFERENCES 

BATEDUN, H. 1915 Mon. Weather Rev. 43, 163. 
BURQERS, J. M. 1948 Advances in Appl. Mech. 1, 171. 
COLE, J. D. 1951 Quart. Appl. Math. 9, 225. 
DOUGLAS, J. &JONES, B. V. 1963 J .  SOC. Id. Appl. Math. 11. 195. 
HOPF, E. 1960 Commun. Pure Appl. Math. 3, 201. 
LIGHTHILL, M. J. 1956 Surveys in  Mechanics (Ed. G. K. Batchelor & R. Davis), pp. 250- 

351. Cambridge University Press. 
LEIBOVICH, S. & SEEBASS, A. R. 1972 Nonlinear Waves, chap. 4. Cornell University Press 

(to appear). 
Rusmov, V. V. 1961 Zh. Nyck. Math. 1 ,  267. 
TAYLOR, T. D., NDEFO, E. & M k S O N ,  B. S. 1972 J .  O m p .  Phy8. 9, 99. 




